Manager, Data Scientist, Recommendation & Personalization Systems

Capital OneMcLean, VA
1d$197,300 - $245,600

About The Position

Data is at the center of everything we do. As a startup, we disrupted the credit card industry by individually personalizing every credit card offer using statistical modeling and the relational database, cutting edge technology in 1988! Fast-forward a few years, and this little innovation and our passion for data has skyrocketed us to a Fortune 200 company and a leader in the world of data-driven decision-making. As a Data Scientist at Capital One, you’ll be part of a team that’s leading the next wave of disruption at a whole new scale, using the latest in computing and machine learning technologies and operating across billions of customer records to unlock the big opportunities that help everyday people save money, time and agony in their financial lives. Team Description homegrown Foundation Models , advanced Reinforcement Learning techniques, and a state-of-the-art scalable architecture built for billions of interactions. Our research agenda is at the forefront of the field, actively focusing on areas such as Causal Inference , Transformer-based architectures , and sophisticated Recommender Systems . Role Description In this role, you will: Partner with a cross-functional team of data scientists, software engineers, and product managers to deliver a product customers love Leverage a broad stack of technologies — Python, Conda, AWS, H2O, Spark, and more — to reveal the insights hidden within huge volumes of numeric and textual data Build machine learning models through all phases of development, from design through training, evaluation, validation, and implementation Flex your interpersonal skills to translate the complexity of your work into tangible business goals The Ideal Candidate is: Customer first. You love the process of analyzing and creating, but also share our passion to do the right thing. You know at the end of the day it’s about making the right decision for our customers. Innovative. You continually research and evaluate emerging technologies. You stay current on published state-of-the-art methods, technologies, and applications and seek out opportunities to apply them. Technical. You’re comfortable with open-source languages and are passionate about developing further. You have hands-on experience developing data science solutions using open-source tools and cloud computing platforms. A data guru. “Big data” doesn’t faze you. You have the skills to retrieve, combine, and analyze data from a variety of sources and structures. You know understanding the data is often the key to great data science.

Requirements

  • Currently has, or is in the process of obtaining one of the following with an expectation that the required degree will be obtained on or before the scheduled start date: A Bachelor's Degree in a quantitative field (Statistics, Economics, Operations Research, Analytics, Mathematics, Computer Science, or a related quantitative field) plus 6 years of experience performing data analytics A Master's Degree in a quantitative field (Statistics, Economics, Operations Research, Analytics, Mathematics, Computer Science, or a related quantitative field) or an MBA with a quantitative concentration plus 4 years of experience performing data analytics A PhD in a quantitative field (Statistics, Economics, Operations Research, Analytics, Mathematics, Computer Science, or a related quantitative field) plus 1 year of experience performing data analytics
  • At least 1 year of experience leveraging open source programming languages for large scale data analysis
  • At least 1 year of experience working with machine learning
  • At least 1 year of experience utilizing relational databases

Nice To Haves

  • PhD in “STEM” field (Science, Technology, Engineering, or Mathematics) plus 3 years of experience in data analytics
  • 3+ years of hands-on experience building, deploying, and maintaining high-scale, production-grade ML systems using MLOps practices, including AWS, Kubeflow, and CI/CD pipelines
  • Deep expertise (4+ years) in developing and optimizing state-of-the-art Deep Learning models, specifically Transformer-based architectures, using PyTorch and distributed training with multi-GPU optimization
  • Extensive experience (4+ years) with high-performance, distributed data processing for petabyte-scale feature engineering using frameworks like DASK and PySpark

Responsibilities

  • Partner with a cross-functional team of data scientists, software engineers, and product managers to deliver a product customers love
  • Leverage a broad stack of technologies — Python, Conda, AWS, H2O, Spark, and more — to reveal the insights hidden within huge volumes of numeric and textual data
  • Build machine learning models through all phases of development, from design through training, evaluation, validation, and implementation
  • Flex your interpersonal skills to translate the complexity of your work into tangible business goals
© 2024 Teal Labs, Inc
Privacy PolicyTerms of Service