Slack AI's mission is to transform how people work by making Slack an AI-powered operating system. We're tackling significant challenges like unlocking collective knowledge and reducing noise, all while building a seamless, consumer-grade AI experience within users' existing workflows. Join us in shaping the future of work through AI. The AI and ML Infrastructure team is part of Slack’s Core Infrastructure organization and is responsible for the foundational systems that enable machine learning and AI across the company. The team designs, builds, and operates reliable, scalable, and high performance platforms that allow product and ML teams to develop, deploy, and operate AI driven capabilities with confidence. The team owns shared infrastructure, services, and tooling that support the full ML lifecycle, including model training, deployment, inference, and monitoring. As Slack AI continues to grow, the team is evolving from traditional ML deployments toward large scale, highly distributed systems. This work involves deep architectural decisions around scalable model deployment strategies, real time feature serving at very high throughput, GPU accelerated inference at message scale, and responsible training of models on sensitive data with strong privacy and safety requirements. We are looking for a Senior or Staff Software Engineer to join the ML Infrastructure focus area and help architect and operate the core systems that power AI at Slack. In this role, you will own foundational infrastructure for large scale model training and inference, and evolve it into a reliable, secure, and self service platform used across the company. You will work at the intersection of distributed systems, GPU infrastructure, and modern ML stacks, solving complex scalability and reliability challenges. This role blends deep systems engineering with a strong understanding of the ML lifecycle, and plays a critical part in shaping the long term technical foundations of Slack’s AI capabilities.
Stand Out From the Crowd
Upload your resume and get instant feedback on how well it matches this job.
Job Type
Full-time
Career Level
Mid Level
Education Level
No Education Listed