About The Position

Senior Associate, Data Scientist - Recommendation & Personalization Systems Data is at the center of everything we do. As a startup, we disrupted the credit card industry by individually personalizing every credit card offer using statistical modeling and the relational database, cutting edge technology in 1988! Fast-forward a few years, and this little innovation and our passion for data has skyrocketed us to a Fortune 200 company and a leader in the world of data-driven decision-making. As a Data Scientist at Capital One, you’ll be part of a team that’s leading the next wave of disruption at a whole new scale, using the latest in computing and machine learning technologies and operating across billions of customer records to unlock the big opportunities that help everyday people save money, time and agony in their financial lives. Team Description Join an elite Applied AI team within AI Foundations, operating at the intersection of deep research and massive real-world impact. We are pioneering the next generation of personalized customer experiences across Capital One's web and mobile applications, leveraging our high-scale ML models. Our core mission involves architecting and deploying cutting-edge personalized recommendation engines. This is powered by original research into homegrown Foundation Models, advanced Reinforcement Learning techniques, and a state-of-the-art scalable architecture built for billions of interactions. Our research agenda is at the forefront of the field, actively focusing on areas such as Causal Inference, Transformer-based architectures, and sophisticated Recommender Systems. Role Description In this role, you will: Partner with a cross-functional team of data scientists, software engineers, and product managers to deliver a product customers love Leverage a broad stack of technologies — Python, Conda, AWS, H2O, Spark, and more — to reveal the insights hidden within huge volumes of numeric and textual data Build machine learning models through all phases of development, from design through training, evaluation, validation, and implementation Flex your interpersonal skills to translate the complexity of your work into tangible business goals The Ideal Candidate is: Innovative. You continually research and evaluate emerging technologies. You stay current on published state-of-the-art methods, technologies, and applications and seek out opportunities to apply them. Creative. You thrive on bringing definition to big, undefined problems. You love asking questions and pushing hard to find answers. You’re not afraid to share a new idea. Technical. You’re comfortable with open-source languages and are passionate about developing further. You have hands-on experience developing data science solutions using open-source tools and cloud computing platforms. Statistically-minded. You’ve built models, validated them, and backtested them. You know how to interpret a confusion matrix or a ROC curve. You have experience with clustering, classification, sentiment analysis, time series, and deep learning. A data guru. “Big data” doesn’t faze you. You have the skills to retrieve, combine, and analyze data from a variety of sources and structures. You know understanding the data is often the key to great data science.

Requirements

  • Currently has, or is in the process of obtaining one of the following with an expectation that the required degree will be obtained on or before the scheduled start date: A Bachelor's Degree in a quantitative field (Statistics, Economics, Operations Research, Analytics, Mathematics, Computer Science, or a related quantitative field) plus 2 years of experience performing data analytics A Master's Degree in a quantitative field (Statistics, Economics, Operations Research, Analytics, Mathematics, Computer Science, or a related quantitative field) or an MBA with a quantitative concentration

Nice To Haves

  • Master’s Degree in “STEM” field (Science, Technology, Engineering, or Mathematics), or PhD in “STEM” field (Science, Technology, Engineering, or Mathematics)
  • Experience working with AWS
  • At least 2 years’ experience in Python, Scala, or R
  • At least 2 years’ experience with machine learning
  • At least 2 years’ experience with SQL

Responsibilities

  • Partner with a cross-functional team of data scientists, software engineers, and product managers to deliver a product customers love
  • Leverage a broad stack of technologies — Python, Conda, AWS, H2O, Spark, and more — to reveal the insights hidden within huge volumes of numeric and textual data
  • Build machine learning models through all phases of development, from design through training, evaluation, validation, and implementation
  • Flex your interpersonal skills to translate the complexity of your work into tangible business goals
© 2024 Teal Labs, Inc
Privacy PolicyTerms of Service