Help us push the boundaries of what's possible in LLM post-training. If you love training models, exploring new architectures, running experiments, and turning research insights into products that ship, we'd love to meet you. About Inference.net Inference.net trains and hosts specialized language models for companies who want frontier-quality AI at a fraction of the cost. The models we train match GPT-5 accuracy but are smaller, faster, and up to 90% cheaper. Our platform handles everything end-to-end: distillation, training, evaluation, and planet-scale hosting. We are a well-funded ten-person team of engineers who work in-person in downtown San Francisco on difficult, high-impact engineering problems. Everyone on the team has been writing code for over 10 years, and has founded and run their own software companies. We are high-agency, adaptable, and collaborative. We value creativity alongside technical prowess and humility. We work hard, and deeply enjoy the work that we do. Most of us are in the office 4 days a week in SF; hybrid works for Bay Area candidates. About the Role You will be responsible for conducting research into experimental models, training systems, and modalities to create novel products for our customers. Your work will span from exploring new architectures and learning methods to optimizing latency and efficiency, with the goal of delivering better models to customers. Your north star is pushing the frontier of what's possible in LLM post-training. You'll explore new techniques, run rigorous experiments, and when something works, help bring it into production with the help of your teammates. This includes training models for customers and running evaluations as part of validating your research. This role reports directly to the founding team. You'll have the autonomy, a large compute budget / GPU reservation, and technical support to explore ambitious ideas and ship the ones that work.
Stand Out From the Crowd
Upload your resume and get instant feedback on how well it matches this job.
Job Type
Full-time
Career Level
Mid Level
Education Level
No Education Listed